
Comparison of IEEE Portable Operating System
Interface (POSIX) - Part I and X/Open Single
UNIX Specifications (SUS)

D. K. Fisher K. M. Tran

Prepared for:
Defense Information Systems Agency
(DISA) Center for Standards

Technical Document 2828
July 1995

DTIC
ELECTE
SEP 2 8 1995

G

Naval Command, Control and
Ocean Surveillance Center
RDT&E Division

San Diego, CA
92152-5001

Mm 123

/V3D

y
DTIC QUALITY INSPECTED 8

Approved for public release; distribution is unlimited.

Technical Document 2828
July 1995

Comparison of IEEE
Portable Operating System
Interface (POSIX) - Part I

and X/OPEN Single
lJNlX^p3clficatlönslSüS)

D. K. Fisher
K. M. Tran

Prepared for:
Defense Information Systems Agency

(DISA) Center for Standards

Accesion For

NTIS CRA&I
DTIC TAB
Unannounced
Justification

a

By
Distribution/

Availability Codes

Dist

B±

Avail and /or
Special

NAVAL COMMAND, CONTROL AND
OCEAN SURVEILLANCE CENTER

RDT&E DIVISION
San Diego, California 92152-5001

K. E. EVANS, CAPT, USN R. T. SHEARER
Commanding Officer Executive Director

ADMINISTRATIVE INFORMATION

The work detailed in this report was performed by the Naval Command, Control and
Ocean Surveillance Center, RDT&E Division, for the Defense Information Systems Agency
Center for Standards. Funding was provided under program element 0604574N and accession
number DN302171.

Released by Under authority of
M. B. Vineberg, Head R. B. Volker, Head
Business Branch Advanced Concepts and Systems

Technology Division
M. W. Morgan, Head
Systems Branch

SB

1. INTRODUCTION 1
1.1 SCOPE 1
1.2 COMPARISON SUMMARY 1

2. FUNCTIONS WITH NO MODIFICATIONS 2
3. FUNCTIONS WITH MODIFICATIONS 3

3.1 access() 3
3.2alarm() 3
3.3 cfsetispeedO, cfsetospeed() 3
3.4 chdir() 4
3.5chmod() 4
3.6 chown() 5
3.7close() 5
3.8 closedir() 6
3.9create0 6
3.10 execl(), execle(), execlp(), execv(), execve(), execvpO 6
3.11 _exit(), exit() 7
3.12fclose() 9
3.13fcntl() 9
3.14fdopen() 9
3.15fflush() 10
3.16fgetc(),fgets() 10
3.17fileno() 10
3.18fbpenO 11
3.19fbrk0 11
3.20 fprintfO 11
3.21fputc() 11
3.22fputs() 12
3.23fread() 12
3.24freopen0 12
3.25fscanf0 12
3.26fseek0 13
3.27fstat0 13
3.28getc() 14
3.29getchar0 14
3.30 getcwd() 14
3.31 getegid() 14
3.32getenv() 14
3.33 geteuid() 15
3.34getgid() 15
3.35 getgrgidO, getgmamO 15
3.36 getgroups() 16
3.37 getlogin() 16
3.38 getpgrpO, getpid(), getppid() 16
3.39 getpwnam(), getpwuidO 17
3.40 getquid() 17
3.41 isattyO 17
3.42 killO 18
3.43 link() 18
3.441seek() 18
3.45mkdir() 18
3.46mkfifo() 19
3.47open() 19
3.48 opendir() 20
3.49 pathconf() 21
3.50pause() 21
3.51pipe() 21
3.52printf() 22
3.53putc() 22

3.54 putchar() 2?
3.55 puts() 2?
3.56read() 2?
3.57 readdir() 24
3.58rename() ?^
3.59rewind() 25
3.60 rewinddir() 25
3.61 rmdir() 25
3.62 scanf() 26
3.63setgid() """^^'!""i"^"!"^ 26
3.64setlocale() 26
3.65 setpgid() [.["[[[[]][][]'.'.'.'.'.'. 26
3.66 setsid() 26
3.67 setuid() 27
3.68 sigaction() 27
3.69 sleepO 29
3.70 stat() "^'"""^^"i"'^"""i""!^^ 29
3.71 sysconf() 3Q

3.72 tcdrainO 31
3.73tcflow() 31
3.74tcfiush() "!!!!!!!!!"!!!!!"!!!!!."!.'""".'"""""!!"!" 31
3.75 tcgetattr() "!"^.'.""."^"".'" 32
3.76tcgetpgrp() ['.'.'.'.'.'.'.'.'. 32
3.77 tcsendbreak() 32
3.78tcsetattr() !""^"!!!!"!'"!"""^!""^i" 33
3.79 tcsetpgrpO 33
3.80tmpfile() 33
3.81 ttyname() 33
3.82tzset() '.^'^'"'^""^^^!"^"""^"""!'"^34
3.83 umask() 34
3.84unlink() '.'".^"~\\\[""^^^
3.85 utime() 35
3.86 wait(), waitpid() 35
3.87write() 36

4. CROSS REFERENCE TABLE 39
5. REFERENCES 43
6. BIBLIOGRAPHY 43

1. INTRODUCTION

This document is a textual comparison study of the IEEE 1003.1 Portable Operating System Interface (POSIX) -
Part 1: System Application Program Interface [C Language] (IEEE 1003.1: 1990) and X/OPEN Single UNIX
Specification (SUS). The purpose of this document is to aid in determining the criteria needed for the successor to
FIPS PUB 151-2. It can also be used as a tool to ascertain the differences between the two specifications. However,
note that this document does not attempt to address application portability concerns between the two specificiations.
To determine the application portability of some commands between an XPG4 UNIX-Branded implementation and a
FTPS 151-2 certified implementation,1 further study is required.

1.1 SCOPE

This study consists of four components: (1) an introduction and outline to the document (2) a list of functions
with no textual differences between IEEE 1003.1 and SUS, (3) an examination of functions with textual variances
between IEEE 1003.1 and SUS, and (4) the appendices.

1.2 COMPARISON SUMMARY

Three parts (a Header, Description and Errors) make up each examination of a function's variances between IEEE
1003.1 and SUS. These sections are listed below, with an explanation of what is contained in each one. Note that
the appearance of boldface text in any of the three sections signifies the addition of new partial text in SUS to
existing IEEE 1003.1 text.

1.2.1 Header

This section notes the differences between include statements of IEEE 1003.1 and SUS. Three possible cases arise:

1. A IEEE 1003.1 include statement becomes an optional statement in SUS
2. A new include statement is added to SUS
3. There is no change.

A new function prototype is sometimes introduced in SUS with its own include statement, and will be so noted in
this section.

1.2.2 Description

This section encompasses all the other differences not covered in the Header and Error sections, including conflicts of
function descriptions, functionalities, and return values. Also covered are IEEE 1003.1 text omission and new SUS
text additions.

1.2.3 Errors
When a function failure occurs, errno is set to the corresponding error code. This section details the new error codes
and/or the new partial error description (in boldface) added to each function in SUS.

Two types of error codes are available. One is associated with fatal function failures; and the other, with possible
function failures. The latter error code emphasizes that the function may or may not fail.

1 In the event of any conflict in functionality, the X/OPEN Single UNIX Specification defers to the IEEE 1003.1
and ANSI C standards.

2. FUNCTIONS WITH NO MODIFICATIONS

No differences exist between IEEE 1003.1 and the SUS Single Unix Specification for the following functions:

abort()

cfgetispeed()

cfgetospeedO

ctermidO

dupO

dup2()

fpathconf()

ftellO

fwrite()

gets()

perror()

remove()

sigaddset()

sigdelset()

sigemptysetO

sigfillsetO

sigismemberO

siglongjmpO

sigpending()

sigprocmaskO

sigsetjmpO

sigsuspend()

time()

times()

uname()

3. FUNCTIONS WITH MODIFICATIONS

3.1 access()

3.1.1 Header

No change.

3.1.2 Description

No change.

3.1.3 Errors
Additional error codes to function failure:

[ELOOP] Too many symbolic links were encountered in resolving path.

Additional error codes to possible function failure:

[ENAMETOOLONG] Pathname resolution of a symbolic link produced an intermediate result whose length

exceeds {PATH.MAX}.

[ETXTBSY] Write access is requested for a pure procedure (shared text) file that is being executed.

3.2 alarmO

3.2.1 Header

#include <unistd.h> added.

3.2.2 Description

SUS text added:

Interactions between alarm() and any of setitimer(), ualarm() or usleepO are unspecified.

3.2.3 Errors

No change.

3.3 cfsetispeedO, cfsetospeed()

3.3.1 Header

No change.

3.3.2 Description

No change.

3.3.3 Errors
Additional error codes to function failure:

[EINVAL] The speed value is not a valid baud rate or outside the range of possible speed values as specified in

<termios.h>.

3.4 chdir()

3.4.1 Header

#include <unistd.h> added.

3.4.2 Description

No change.

3.4.3 Errors

Additional error codes to function failure:

[ELOOP] Too many symbolic links were encountered in resolving path.

Additional error codes to possible function failure:

[ENAMETOOLONG] Updated to also include the following: Pathname resolution of a symbolic link produced
an intermediate result whose length exceeds {PATH_MAX}.

3.5 chmod()

3.5.1 Header

#include <sys/types.h> made optional.

3.5.2 Description

SUS modifications:

Function also changes signal SJSVTX in addition to SJSUID, SJSGID, and file permission bits (IEEE
1003.1 Subclause 5.6.4.2, lines 800-801)

SUS text added:

If a directory is writable and the mode bit SJSVTX is set on the directory, a process may remove or rename files
within that directory only if one or more of the following is true:

The effective user ID of the process is the same as that of the owner ID of the file.

The effective user ID of the process is the same as that of the owner ID of the directory.

The process has appropriate privileges.

3.5.3 Errors

Additional error codes to function failure:

[ELOOP] Too many symbolic links were encountered in resolving path.

Additional error codes to possible function failure:

[EINTR] A signal was caught during execution of the function.

[EINVAL] The value of the mode argument is invalid.

[ENAMETOOLONG] Pathname resolution of a symbolic link produced an intermediate result whose length
exceeds {PATH_MAX}. °

3.6 chown()

3.6.1 Header

#include <sys/types.h> made optional.
#include <unistd.h> added.

3.6.2 Description

SUS text added:

Changing the group ID is permitted to a process with an effective user ID equal to the user ID of the file, but
without appropriate privileges, if and only if owner is equal to the file's user ID or (uid_t)-l and group is
equal either to the calling process' effective group ED or to one of its supplementary group IDs.

If owner or group is specified as (uid_t)-1 or (gid_t)-1 respectively, the corresponding ID of the file is unchanged.

IEEE 1003.1 and SUS differences:

(IEEE 1003.1) Changing the owner [ED] is restricted to processes with appropriate privileges.

(SUS) Changing the user ID is restricted to processes with appropriate privileges.

(IEEE 1003.1) If -1 is return, no changes shall be made in the owner and group of the file.

(SUS) If -1 is return, no changes are made in the user TD and group ID of the file.

3.6.3 Errors

Additional error codes for function failure:

[ELOOP] Too many symbolic links were encountered in resolving path.

Additional error codes to possible function failure:

[EIO] An I/O error occurred while reading or writing to the file system.

[EINTR] The chown() function was interrupted by a signal which was caught.

[ENAMETOOLONG] Pathname resolution of a symbolic link produced an intermediate result whose length
exceeds {PATHJVIAX}.

3.7 closeO

3.7.1 Header

#include <unistd.h> added.

3.7.2 Description

SUS text added:

If a STREAMS-based fildes is closed and the calling process was previously registered to receive a SIGPOLL
signal for events associated with that STREAM, the calling process will be unregistered for events associated
with the STREAM. The last close() for a STREAM causes the STREAM associated with fildes to be dismantled.
If 0_NONBLOCK is not set and there have been no signals posted for the STREAM, and if there is data on the
module's write queue, close() waits for an unspecified time (for each module and driver) for any output to drain
before dismantling the STREAM. The time delay can be changed via an I_SETCLTIME ioctl() request. If the
0_NONBLOCK flag is set, or if there are any pending signals, close() does not wait for output to drain, and
dismantles the STREAM immediately.

If the implementation supports STREAMS-based pipes, and fildes is associated with one end of a pipe, the last
close() causes a hangup to occur on the other end of the pipe. In addition, if the other end of the pipe has been
named by fattach(), then the last close() forces the named end to be detached by fdetach(). If the named end has no
open file descriptors associated with it and gets detached, the STREAM associated with that end is also
dismantled.

If fildes refers to the master side of a pseudo-terminal, a SIGHUP signal is sent to the process group, if any, for
which the slave side of the pseudo-terminal is the controlling terminal. It is unspecified whether closing the
master side of the pseudo-terminal flushes all queued input and output.

If fildes refers to the slave side of a STREAMS-based pseudo-terminal, a zero-length message may be sent to the
master.

3.7.3 Errors

Additional error codes to possible function failure:

[EIO] An I/O error occurred while reading from or writing to the file system.

3.8 closedir()

3.8.1 Header

#include <sys/types.h> made optional.

3.8.2 Description

No change.

3.8.3 Errors

Additional error codes to possible function failure:

[EINTR] The function was interrupted by a signal.

3.9 create()

3.9.1 Header

#include <sys/types.h> and #include <sys/stat.h> made optional.

3.9.2 Description

No change.

3.9.3 Errors

No change.

3.10 execl(), execle(), execlpO, execv(), execve(), execvp()

3.10.1 Header

#include <unistd.h> added.

3.10.2 Description

IEEE 1003.1 text (Subclause 3.1.2.2, lines 101-105) omitted in SUS:

For the execle() function, the environment is provided by following the NULL pointer that shall terminate the
list of arguments in the parameter list to execle() with an additional parameter, as if it were declared as:

char *const envpfj

SUS text added:

If the process image file is not a valid executable object, execlp() and execvp() use the contents of that file as
standard input to a command interpreter conforming to system(). In this case, the command interpreter becomes
the new process image.

The state of conversion descriptors and message catalogue descriptors in the new process image is undefined. For
the new process, the equivalent of:

setlocale(LC_ALL, "C") is executed at startup.

After a successful call to any of the exec functions, alternate signal stacks are not preserved and the
SA_ONSTACK flag is cleared for all signals. (SUS appended this text to paragraph 124-128 of IEEE 1003.1
Subclause 3.1.2.2.)

After a successful call to any of the exec functions, any functions previously registered by atexit() are no longer
registered.

If the ST_NOSUID bit is set for the file system containing the new process image file, then the effective user
ID, effective group ID, saved set-user-DD and saved set-group-ID are unchanged in the new process image. (SUS
adds this text to beginning of paragraph 129-137 of IEEE 1003.1 Subclause 3.1.2.2.)

Any shared memory segments attached to the calling process image will not be attached to the new process
image.

Any mappings established through mmap() are not preserved across an exec.

The new process also inherits at least the following attributes from the calling process image:

1. nice value (see nice())
2. semadj values (see semopO)
3. file size limit (see ulimit())
4. resource limits
5. controlling terminal
6. interval timers

3.10.3 Errors

Additional error codes to function failure:

[ELOOP] Too many symbolic links were encountered in resolving path.

Additional error codes to possible function failure:

[ENAMETOOLONG] The length of the path or file arguments, or an element of the environment variable
PATH prefixed to a file, exceeds {PATH_MAX}, or a pathname component is longer than {NAME_MAX}.

[ETXTBSY] The new process image file is a pure procedure (shared text) file that is currently open for writing
by some process.

3.11 _exit(), exit()

3.11.1 Header

#include <unistd.h> added.

3.11.2 Description

SUS text added:

The exit() function first calls all functions registered by atexit(), in the reverse order of their registration. Each
function is called as many times as it was registered.

If a function registered by a call to atexit() fails to return, the remaining registered functions are not called and the
rest of the exit() processing is not completed. If exit() is called more than once, the effects are undefined.

The exit() function then flushes all output streams, closes all open streams, and removes all files created by
tmpfile().

Each mapped memory object is unmapped.

Each attached shared-memory segment is detached and the value of shm_nattch (see shmget()) in the data structure
associated with its shared memory ID is decremented by 1.

For each semaphore for which the calling process has set a semadj value, see semop(), that value is added to the
semval of the specified semaphore.

If the parent process has set its SA_NOCLDWAIT flag, or set SIGCHLD to SIGJGN, the status will be
discarded, and the lifetime of the calling process will end immediately.

IEEE 1003.1 and SUS differences:

(IEEE 1003.1) All open file descriptors and directory streams in the calling process are closed.

(SUS) All of the file descriptors, directory streams, conversion descriptors and message catalogue descriptors
open in the calling process are closed.

(IEEE 1003.1) If the parent process of the calling process is executing a wait() or waitpid(), it is notified of the
termination of the calling process and the low order 8 bits of status are made available to it.

(SUS) If the parent process of the calling process is executing a wait(), wait3(), waitidQ or waitpid(), and has
neither set its SA_NOCLDWAIT flag nor set SIGCHLD to SIGJGN, it is notified of the calling process'
termination and the low-order eight bits (that is, bits 0377) of status are made available to it. If the parent is not
waiting, the child's status will be made available to it when the parent subsequently executes wait(), wait3(),
waitid() or waitpid().

(IEEE 1003.1) If the parent process of the calling process is not executing a wait() or waitpid()function, the exit
status code is saved for return to the parent process whenever the parent process executes an appropriate
subsequent wait() or waitpid().

(SUS) If the parent process of the calling process is not executing a wait(), wait3(), waitid() or waitpid(), aid
has not set its SAJJOCLDWAIT flag, or set SIGCHLD to SIGJGN, the calling process is transformed into a
zombie process. A zombie process is an inactive process and it will be deleted at some later time when its parent
process executes wait(), wait3(), waitid() or waitpid().

(IEEE 1003.1) Children of a terminated process shall be assigned a new parent process ID, corresponding to an
implementation-defined system process.

(SUS) The parent process ID of all of the calling process' existing child processes and zombie processes is set
to the process ID of an implementation-dependent system process. That is, these processes are inherited by a
special system process.

3.11.3 Errors

No change.

3.12 fcloseO

Comparison is not possible because IEEE 1003.1 references this function to closeQ, whereas SUS details this
function in its own section. However, SUS makes the following updates:

3.12.1 Errors

Modification of error codes to function failure:

[EFBIG] An attempt was made to write a file that exceeds the maximum file size or the process' file size
limit.

Additional error codes to possible function failure:

[ENXIO] A request was made of a non-existent device, or the request was outside the device.

3.13 fcntlO

3.13.1 Header

#include <sys/types.h> made optional.

3.13.2 Description

No change.

3.13.3 Errors

No change.

3.14 fdopen()

3.14.1 Header

No change.

3.14.2 Description

IEEE 1003.1 text modified to SUS as follows:

r or rb open a file for reading
w or wb open a file for writing
a or ab open a file for writing at end of file
or rb+ or r+b open a file for update (reading and writing)
or wb+ or w+b open a file for update (reading and writing)
or ab+ or a+b open a file for update (reading and writing) at end of file
where the character b has no effect, but is allowed for ISO/IEC standard conformance.

3.14.3 Errors

Additional error codes to possible function failure:

[EBADF] The fildes argument is not a valid file descriptor.

[EINVAL] The mode argument is not a valid mode.

[EMFILE] {FOPEN_MAX} streams are currently open in the calling process.

[EMFILE] {STREAMJVIAX} streams are currently open in the calling process.

[ENOMEM] Insufficient space to allocate a buffer.

3.15 fflushO

3.15.1 Header

No change.

3.15.2 Description

No change.

3.15.3 Errors

Modification of error codes to function failure:

[EFBIG] An attempt was made to write a file that exceeds the maximum file size or the process' file size
limit.

Additional error codes to possible function failure:

[ENXIO] A request was made of a non-existent device, or the request was outside the device.

3.16 fgetc(), fgets()

3.16.1 Header

No change.

3.16.2 Description

No change.

3.16.3 Errors

Additional error codes to function failure:

[EIO] This error code is updated in SUS to also include the occurrence of a physical I/O.

Additional error codes to possible function failure:

[ENOMEM] Insufficient storage space is available.

[ENXIO] A request was made of a non-existent device, or the request was outside the capabilities of the device.

3.17 filenoO

3.17.1 Header

No change.

3.17.2 Description

No change.

3.17.3 Errors

Additional error codes to possible function failure:

[EBADF] The stream argument is not a valid stream.

10

3.18 fopen()

Comparison not possible because IEEE 1003.1 references this function to close(), whereas SUS details this function
in its own section. However, SUS marks the following errors as additions:

3.18.1 Errors

Additional error codes to function failure:

[ELOOP] Too many symbolic links were encountered in resolving path.

Additional error codes to possible function failure:

[EINVAL] The value of the mode argument is not valid.

[EMFILE] {FOPEN_MAX} streams are currently open in the calling process.

[EMFILE] {STREAM_MAX} streams are currently open in the calling process.

[ENAMETOOLONG] Pathname resolution of a symbolic link produced an intermediate result whose length
exceeds {PATH_MAX}.

3.19 fork()

3.19.1 Header

#include <unistd.h> added.

3.19.2 Description

SUS text added:

The child process may have its own copy of the parent's message catalogue descriptors.

All semadj values are cleared.

Interval timers are reset in the child process.

3.19.3 Errors

No change.

3.20 fprintf()

Comparison is not possible because IEEE 1003.1 references this function to write() and lseek(), whereas SUS details
this function in its own section.

3.21 fputcO

Comparison is not possible because IEEE 1003.1 references this function to write() and lseek(), whereas SUS details
this function in its own section. However, SUS marks the following errors as additions:

3.21.1 Errors

Additional error codes to function failure:

[EFBIG] This error code is updated in SUS to also include the occurrence of writing to a file that exceeds the
process' file size limit.

[EIO] This error code is updated in SUS to also include the occurrence of a physical I/O.

11

Additional error codes to possible function failure:

[ENOMEM] Insufficient storage space is available.

[ENXIO] A request was made of a non-existent device, or the request was outside the capabilities of the device.

3.22 fputs()

Comparison is not possible because IEEE 1003.1 references this function to write() and lseek(), whereas SUS details
this function in its own section and with reference to fputc().

3.23 fread()

Comparison is not possible because IEEE 1003.1 references this function to readO and lseek(), whereas SUS details
this function in its own section and with reference to fgetc().

3.24 freopen()

Comparison is not possible because IEEE 1003.1 references this function to fopen() and fclose(), whereas SUS
details this function in its own section. However, SUS marks the following errors as additions:

3.24.1 Errors

Additional error codes to function failure:

[ELOOP] Too many symbolic links were encountered in resolving path.

Additional error codes to possible function failure:

[EINVAL] The value of the mode argument is not valid.

[ENAMETOOLONG] Pathname resolution of a symbolic link produced an intermediate result whose length
exceeds {PATH_MAX}.

3.25 fscanf()

Comparison is not possible because IEEE 1003.1 references this function to lseek() and read(), whereas SUS details
this function in its own section. However, SUS makes the following updates:

3.25.1 Description

Conversions can be applied to the nth argument after the format in the argument list, rather than to the next unused
argument. In this case, the conversion character % (see below) is replaced by the sequence %n$, where n is a decimal
integer in the range [1, {NL_ARGMAX}]. This feature provides for the definition of format strings that select
arguments in an order appropriate to specific languages. In format strings containing the %n$ form of conversion
specifications, it is unspecified whether numbered arguments in the argument list can be referenced from the format
string more than once.

The format can contain either form of a conversion specification, that is, % or %n$, but the two forms cannot
normally be mixed within a single format string. The only exception to this is that %% or %* can be mixed with
the %n$ form.

The following conversion characters are valid:

12

C Matches a sequence of characters of the number specified by the field width (1 if no field width is present in
the directive). The sequence is converted to a sequence of wide-character codes in the same manner as mbstowcs().
The corresponding argument must be a pointer to the initial wide-character code of an array of type wcharj large
enough to accept the sequence which is the result of the conversion. No null wide-character code is added. If the
matched sequence begins with the initial shift state, the conversion is the same as expected for mbstowcs();
otherwise the behavior of the conversion is undefined. The normal skip over white-space characters is suppressed
in this case.

S Matches a sequence of characters that are not white space. The sequence is converted to a sequence of wide
character codes in the same manner as mbstowcs(). The corresponding argument must be a pointer to the initial
wide-character code of an array of wcharj large enough to accept the sequence and a terminating null wide-
character code, which will be added automatically. If the field width is specified, it denotes the maximum number
of characters to accept.

3.25.2 Errors

Additional error codes to possible function failure:

[EILSEQ] Input byte sequence does not form a valid character.

[EINVAL] There are insufficient arguments.

3.26 fseek()

Comparison is not possible because IEEE 1003.1 references this function to lseek() and write(), whereas SUS details
this function in its own section. However, SUS makes the following updates:

3.26.1 Description

If the stream is to be used with wide character input/output functions, offset must either be 0 or a value returned by
an earlier call to ftell() on the same stream and whence must be SEEK_SET.

The fseek() function returns 0 if it succeeds; otherwise it returns -1 and sets errno to indicate the error.

3.26.2 Errors

Additional error codes to function failure:

[EFBIG] This error code is updated in SUS to also include the occurrence of writing to a file that exceeds the
process' file size limit.

[EIO] This error code is updated in SUS to also include the occurrence of a physical I/O.

[ENXIO] A request was made of a non-existent device, or the request was outside the capabilities of the device.

3.27 fstat()

3.27.1 Header

#include <sys/types.h> made optional.

3.27.2 Description

No change.

3.27.3 Errors

Additional error codes to function failure:

[EIO] An I/O error occurred while reading from the file system.

13

Additional error codes to possible function failure:

[EOVERFLOW] One of the values is too large to store into the structure pointed to by the buf argument.

3.28 getc()

Comparison is not possible because IEEE 1003.1 references this function to lseek() and read(), whereas SUS
references to fgetc().

3.29 getchar()

See getc().

3.30 getcwdO

3.30.1 Header

#include <unistd.h> added.

3.30.2 Description

No change.

3.30.3 Errors

Additional error codes to possible function failure:

[ENOMEM] Insufficient storage space is available.

3.31 getegidO

3.31.1 Header

#include <sys/types.h> made optional.
#include <unistd.h> added.

3.31.2 Description

No change.

3.31.3 Errors

No change.

3.32 getenv()

3.32.1 Header

No change.

3.32.2 Description

SUS adds the boldface text to the following:

The getenv() function searches the environment list for a string of the form "name=value", and returns a pointer
to a string containing the value for the specified name. If the specified name cannot be found, a null pointer is

14

returned. The string pointed to must not be modified by the application, but may be overwritten by a subsequent
call to getenv() or putenv() but will not be overwritten by a call to any other function in this document.

3.32.3 Errors

No change.

3.33 geteuid()

3.33.1 Header

#include <sys/types.h> made optional.
#include <unistd.h> added.

3.33.2 Description

No change.

3.33.3 Errors

No change.

3.34 getgidO

3.34.1 Header

#include <sys/types.h> made optional.
#include <unistd.h> added.

3.34.2 Description

No change.

3.34.3 Errors

No change.

3.35 getgrgidO, getgrnam()

3.35.1 Header

#include <sys/types.h> made optional.

3.35.2 Description

SUS text added:

On error, errno will be set to indicate the error.

3.35.3 Errors

Additional error codes to possible function failure:

[EIO] An I/O error has occurred.

[EINTR] A signal was caught during getgrgid().

[EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process.

[ENFILE] The maximum allowable number of files is currently open in the system.

15

3.36 getgroupsO

3.36.1 Header

#include <sys/types.h> made optional.
#include <unistd.h> added.

3.36.2 Description

IEEE 1003.1 and SUS differences:

(IEEE 1003.1) Upon successful completion, the number of supplementary group IDS is returned. This value is
zero if {NGROUPS_MAX} is zero.

(SUS) A return value of 0 is no longer permitted, because {NGROUPS_MAX} cannot be 0.

3.36.3 Errors

No change.

3.37 getloginQ

3.37.1 Header

#include <unistd.h> added.

3.37.2 Description

SUS text added:

When the error occurs, SUS sets errno to indicate the event in addition to IEEE 1003. l's returning of the NULL
pointer.

3.37.3 Errors

Additional error codes to possible function failure:

[EMFILE] {OPEN_MAX} file descriptors are currently open in the calling process.

[ENFILE] The maximum allowable number of files is currently open in the system.

[ENXIO] The calling process has no controlling terminal.

3.38 getpgrpO, getpid(), getppid()

3.38.1 Header

#include <sys/types.h> made optional.
#include <unistd.h> added.

3.38.2 Description

No change.

3.38.3 Errors

No change.

16

3.39 getpwnam(), getpwuid()

3.39.1 Header

#include <sys/types.h> made optional.
#include <unistd.h> added.

3.39.2 Description

SUS text added:

On error, errno is set to indicate the error.

3.39.3 Errors

Additional error codes to possible function failure:

[EIO] An I/O error has occurred.

[EINTR] A signal was caught during getpwnam().

[EMFTLE] {OPEN_MAX} file descriptors are currently open in the calling process.

[EM FILE] The maximum allowable number of files is currently open in the system.

3.40 getquid()

3.40.1 Header

#include <sys/types.h> made optional.
#include <unistd.h> added.

3.40.2 Description

No change.

3.40.3 Errors

No change.

3.41 isattyO

3.41.1 Header

#include <sys/types.h> made optional.

3.41.2 Description

IEEE 1003.1 and SUS differences:

(IEEE 1003.1) The isattyO function returns 1 iffildes is a valid file descriptor associated with a terminal; zero
otherwise.

(SUS) The isattyO function returns 1 if fildes is associated with a terminal; otherwise it returns 0 and may set
errno to indicate the error.

3.41.3 Errors
Additional error codes to possible function failure:

[EBADF] The fildes argument is not a valid open file descriptor.

[ENOTTY] The fildes argument is not associated with a terminal.

17

3.42 killQ

3.42.1 Header

#include <sys/types.h> made optional.

3.42.2 Description

IEEE 1003.1 and SUS differences:

(IEEE 1003.1) If pid is -1, the behavior of the kill() function is unspecified.

(SUS) If pid is -1, sig will be sent to all processes (excluding an unspecified set of system processes) for which
the process has permission to send that signal.

3.42.3 Errors

No change.

3.43 IinkO

3.43.1 Header

#include <unistd.h> added.

3.43.2 Description

No change.

3.43.3 Errors

Additional error codes to function failure:

[ELOOP] Too many symbolic links were encountered in resolving pathl or path2.

[EXDEV] The link named by path2 and the file named by pathl are on different file systems and the
implementation does not support links between file systems, or pathl refers to a named STREAM.

Additional error codes to possible function failure:

[ENAMETOOLONG] Pathname resolution of a symbolic link produced an intermediate result whose length
exceeds {PATH.MAX}.

3.44 IseekO

3.44.1 Header

#include <sys/types.h> made optional.

3.44.2 Description

No change.

3.44.3 Errors

No change.

3.45 mkdirO

3.45.1 Header

#include <sys/types.h> made optional.

3.45.2 Description

IEEE 1003.1 and SUS differences:

(IEEE 1003.1) The owner ID of the directory is set to the effective user ID of the process.

(SUS) The directory's user ID is set to the process' effective user ID.

3.45.3 Errors

Additional error codes to function failure:

[ELOOP] Too many symbolic links were encountered in resolving path.

Additional error codes to possible function failure:

[ENAMETOOLONG] Pathname resolution of a symbolic link produced an intermediate result whose length
exceeds {PATHJV1AX}.

3.46 mkfifoO

3.46.1 Header

#include <sys/types.h> made optional.

3.46.2 Description

IEEE 1003.1 and SUS differences:

(IEEE 1003.1) The owner ID of the FIFO shall be set to the effective user ID of the process.

(SUS) The FIFO's user ID will be set to the process' effective user ID.

3.46.3 Errors

Additional error codes to function failure:

[ELOOP] Too many symbolic links were encountered in resolving path.

Additional error codes to possible function failure:

[ENAMETOOLONG] Pathname resolution of a symbolic link produced an intermediate result whose length
exceeds {PATH_MAX}.

3.47 open()

3.47.1 Header

#include <sys/types.h> made optional.
#include <sys/stat.h> made optional.

3.47.2 Description

SUS text added:

If path refers to a STREAMS file, oflag may be constructed from 0_NONBLOCK OR-ed with either
0_RDONLY, 0_WRONLY, or 0_RDWR. Other flag values are not applicable to STREAMS devices and have
no effect on them. The value 0_NONBLOCK affects the operation of STREAMS drivers and certain functions
applied to file descriptors associated with STREAMS files. For STREAMS drivers, the implementation of
0_NONBLOCK is device-specific.

If path names the master side of a pseudo-terminal device, then it is unspecified whether open() locks the slave
side so that it cannot be opened. Portable applications must call unlockpt() before opening the slave side.

19

0_SYNC If 0_SYNC is set on a regular file, writes to that file will cause the process to block until the data
is delivered to the underlying hardware.

IEEE 1003.1 and SUS differences:

0_CREAT (IEEE 1003.1)

... The file permission bits shall be set to the value of mode except those set in the file mode creation mask
of the process (see [umask()]). ...

0_CREAT (SUS)

... The access permission bits (see <sys/stat.h>) of the file mode are set to the value of the third argument
taken as type modej modified as follows: a bitwise-AND is performed on the file-mode bits and the
corresponding bits in the complement of the process' file mode creation mask. Thus, all bits in the file mode
whose corresponding bit in the file mode creation mask is set are cleared. ...

3.47.3 Errors

Additional error codes to function failure:

[EIO] The path argument names a STREAMS file and a hangup or error occurred during the open().

[ELOOP] Too many symbolic links were encountered in resolving path.

[ENOSR] The path argument names a STREAMS-based file and the system is unable to allocate a STREAM.

[ENXIO] CLNONBLOCK is set, the named file is a FIFO, 0_WRONLY is set and no process has the file open
for reading. The named file is a character special or block special file, and the device
associated with this special file does not exist.

Additional error codes to possible function failure:

[EAGAIN] The path argument names the slave side of a pseudo-terminal device that is locked.

[EINVAL] The value of the oflag argument is not valid.

[ENAMETOOLONG] Pathname resolution of a symbolic link produced an intermediate result whose length
exceeds {PATH_MAX}.

[ENOMEM] The path argument names a STREAMS file and the system is unable to allocate resources.

[ETXTBSY] The file is a pure procedure (shared text) file that is being executed and oflag is 0_WRONLY or
0_RDWR.

3.48 opendir()

3.48.1 Header

#include <sys/types.h> made optional.

3.48.2 Description

No change.

3.48.3 Errors

Additional error codes to function failure:

[ELOOP] Too many symbolic links were encountered in resolving path.

Additional error codes to possible function failure:

20

[ENAMETOOLONG] Pathname resolution of a symbolic link produced an intermediate result whose length
exceeds {PATH_MAX}.

3.49 pathconfO

3.49.1 Header

No change.

3.49.2 Description

No change.

3.49.3 Errors

Additional error codes to function failure:

[ELOOP] Too many symbolic links were encountered in resolving path.

Additional error codes to possible function failure:

[ENAMETOOLONG] Pathname resolution of a symbolic link produced an intermediate result whose length
exceeds {PATHJV1AX}.

3.50 pause()

3.50.1 Header

#include <unistd.h> added.

3.50.2 Description

No change.

3.50.3 Errors

No change.

3.51 pipe()

3.51.1 Header

No change.

3.51.2 Description

SUS text added:

It is unspecified whether fildes[0] is also open for writing and whether fildes[l] is also open for reading.

3.51.3 Errors

No change.

21

3.52 printf()

Comparison is not possible because IEEE 1003.1 references this function to lseek() and write(), whereas SUS
references to fprintf().

3.53 putc()

Comparison is not possible because IEEE 1003.1 references this function to lseek() and write(), whereas SUS
references to fputc().

3.54 putchar()

Comparison is not possible because IEEE 1003.1 references this function to lseek() and write(), whereas SUS
references to putc().

3.55 puts()

Comparison is not possible because IEEE 1003.1 references this function to write() and lseek(), whereas SUS details
this function in its own section and with reference to fputc().

3.56 read()

3.56.1 Header

#include <unistd.h> added to read().

SUS function and header added as follows:

#include <sys/uio.h>

ssize_t readv(int fildes, const struct iovec *iov, int iovcnt);

3.56.2 Description

IEEE 1003.1 and SUS differences:

(IEEE 1003.1) If a read() is interrupted by a signal after it has successfully read some data, either it shall return -
1 with errno set to [EINTR], or it shall return the number of bytes read.

(SUS) If a read() is interrupted by a signal after it has successfully read some data, it will return the number of
bytes read. (FTPS 151-2 conformance)

IEEE 1003.1 text omitted in SUS:

A read() from a pipe or FIFO shall never return with errno set to [EINTR] if it has transferred any data.

SUS text added to describe the new function and reading of data from STREAM files:

A readO from a STREAMS file can read data in three different modes: byte-stream mode, message-nondiscard
mode, and message-discard mode. The default is byte-stream mode. This can be changed using the I_SRDOPT
ioctl() request, and can be tested with the I_GRDOPT ioctl(). In byte-stream mode, readO retrieves data from the
STREAM until as many bytes as were requested are transferred, or until there is no more data to be retrieved.
Byte-stream mode ignores message boundaries.

In STREAMS message-nondiscard mode, readO retrieves data until as many bytes as were requested are
transferred, or until a message boundary is reached. If readO does not retrieve all the data in a message, the

22

remaining data is left on the STREAM, and can be retrieved by the next readO call. Message-discard mode also
retrieves data until as many bytes as were requested are transferred, or a message boundary is reached. However,
unread data remaining in a message after the read() returns is discarded, and is not available for a subsequent read(),
readv() or getmsg() call.

How readO handles zero-byte STREAMS messages is determined by the current read mode setting. In byte-
stream mode, read() accepts data until it has read nbyte bytes, or until there is no more data to read, or until a
zero-byte message block is encountered. The read() function then returns the number of bytes read, and places the
zero-byte message back on the STREAM to be retrieved by the next read(), readv() or getmsg(). In message-
nondiscard mode or message-discard mode, a zero-byte message returns 0 and the message is removed from the
STREAM. When a zero-byte message is read as the first message on a STREAM, the message is removed from
the STREAM and 0 is returned, regardless of the read mode.

A readO from a STREAMS file returns the data in the message at the front of the STREAM head read queue,
regardless of the priority band of the message. By default, STREAMS are in control-normal mode, in which a
read() from a STREAMS file can only process messages that contain a data part but do not contain a control part.
The read() fails if a message containing a control part is encountered at the STREAM head. This default action
can be changed by placing the STREAM in either control-data mode or control-discard mode with the I_SRDOPT
ioctl() command. In control-data mode, readO converts any control part to data and passes it to the application
before passing any data part originally present in the same message. In control-discard mode, readO discards
message control parts but returns to the process any data part in the message.

In addition, read() and readv() will fail if the STREAM head had processed an asynchronous error before the call.
In this case, the value of errno does not reflect the result of readO or readv() but reflects the prior error. If a
hangup occurs on the STREAM being read, readO continues to operate normally until the STREAM head read
queue is empty. Thereafter, it returns 0.

The readv() function is equivalent to read(), but places the input data into the iovcnt buffers specified by the
members of the iov array: iov[0], iov[l], ..., iov[iovcnt-l]. The iovcnt argument is valid if greater than 0 and
less than or equal to {IOV_MAX}.

Each iovec entry specifies the base address and length of an area in memory where data should be placed. The
readv() function always fills an area completely before proceeding to the next.

Upon successful completion, readv() marks for update the st_atime field of the file.

Upon successful completion, readO and readv() return a non-negative integer indicating the number of bytes
actually read. Otherwise, the functions return -1 and set errno to indicate the error. (Boldface text is added in
SUS.)

3.56.3 Errors

Additional error codes to both functions' failure:

[EAGAIN] The 0_NONBLOCK flag is set for the file descriptor and the process would be delayed in readO or
readv().

[EBADMSG] The file is a STREAM file that is set to control-normal mode and the message waiting to be read
includes a control part.

[EINVAL] The STREAM or multiplexer referenced by fildes is linked (directly or indirectly) downstream from a
multiplexer.

[EISDIR] The fildes argument refers to a directory and the implementation does not allow the directory to be
read using read() or readv(). The readdir() function should be used instead.

Error codes to freadv() failure:

[EINVAL] The sum of the iovjen values in the iov array overflowed an ssize_t.

23

Error codes to both functions' possible failure:

[ENXIO] A request was made of a non-existent device, or the request was outside the capabilities of the device.

Error codes to freadv()'s possible failure:

[EINVAL] The iovcnt argument was less than or equal to 0, or greater than {IOV_MAX}.

3.57 readdir()

3.57.1 Header

#include <sys/types.h> made optional.

3.57.2 Description

IEEE 1003.1 and SUS differences:

(IEEE 1003.1) The readdirO function shall not return directory entries containing empty names. It is
unspecified whether entries are returned for dot or dot-dot.

(SUS) If entries for dot or dot-dot exist, one entry will be returned for dot and one entry will be returned for dot-
dot; otherwise they will not be returned.

(IEEE 1003.1) After a call to the fork() function, either the parent or the child (but not both) may continue
processing the directory stream using readdir() or rewinddir() or both. If both the parent and child processes use
these functions, the result is undefined. Either or both processes may use closedir()

(SUS) After a call to fork(), either the parent or child (but not both) may continue processing the directory
stream using readdir(), rewinddir() or seekdir(). If both the parent and child processes use these functions, the
result is undefined.

SUS text added:

If the entry names a symbolic link, the value of the d_ino member is unspecified.

3.57.3 Errors

Additional error codes to possible function failure:

[ENOENT] The current position of the directory stream is invalid.

3.58 renameO

3.58.1 Header

No change.

3.58.2 Description

SUS text added:

If old points to a pathname that names a symbolic link, the symbolic link is renamed. If new points to a
pathname that names a symbolic link, the symbolic link is removed.

3.58.3 Errors

Additional error codes to function failure:

[EBUSY] The directory named by old or new is currently in use by the system or another process, and the
implementation considers this an error, or the file named by old or new is a named STREAM.

[EIO] A physical I/O error has occurred.

24

[ELOOP] Too many symbolic links were encountered in resolving either pathname.

[EPERM] or [EACCES] The SJSVTX flag is set on the directory containing the file referred to by old and the
caller is not the file owner, nor is the caller the directory owner, nor does the caller have appropriate privileges; or
new refers to an existing file, the SJSVTX flag is set on the directory containing this file and the caller is not
the file owner, nor is the caller the directory owner, nor does the caller have appropriate privileges.

Additional error codes to possible function failure:

[ENAMETOOLONG] Pathname resolution of a symbolic link produced an intermediate result whose length
exceeds {PATH_MAX}.

[ETXTBSY] The file to be renamed is a pure procedure (shared text) file that is being executed.

3.59 rewind()

Comparison is not possible because IEEE 1003.1 references this function to lseek(), whereas SUS details this
function in its own section and with reference to fseek().

3.60 rewinddirO

3.60.1 Header

#include <sys/types.h> made optional.

3.60.2 Description

IEEE 1003.1 and SUS differences:

(IEEE 1003.1) After a call to the fork() function, either the parent or the child (but not both) may continue
processing the directory stream using readdir() or rewinddirO or both. If both the parent and child processes use
these functions, the result is undefined. Either or both processes may use closedir().

(SUS) After a call to fork(), either the parent or child (but not both) may continue processing the directory
stream using readdir(), rewinddirO or seekdir(). If both the parent and child processes use these functions, the
result is undefined.

3.60.3 Errors

No change.

3.61 rmdirO

3.61.1 Header

#include <unistd.h> added.

3.61.2 Description

SUS text added:

If path names a symbolic link, then rmdir() fails and sets errno to [ENOTDIR].

3.61.3 Errors

Additional error codes to function failure:

[EIO] A physical I/O error has occurred.

[ELOOP] Too many symbolic links were encountered in resolving path.

25

[EPERM] or [EACCES] The SJSVTX flag is set on the parent directory of the directory to be removed and the
caller is not the owner of the directory to be removed, nor is the caller the owner of the parent directory, nor does
the caller have the appropriate privileges.

Additional error codes to possible function failure:

[ENAMETOOLONG] Pathname resolution of a symbolic link produced an intermediate result whose length
exceeds {PATH_MAX}.

3.62 scanf()

Comparison is not possible because IEEE 1003.1 references this function to lseek() and read(), whereas SUS
references this function to fscanf().

3.63 setgid()

3.63.1 Header

#include <sys/types.h> made optional.
#include <unistd.h> added.

3.63.2 Description

No change.

3.63.3 Errors

No change.

3.64 setlocaleQ

Comparison is not practical because SUS and IEEE 1003.1 descriptions for this function differ vastly. See actual
documents.

3.65 setpgid()

3.65.1 Header

#include <sys/types.h> made optional.
#include <unistd.h> added.

3.65.2 Description

No change.

3.65.3 Errors

IEEE 1003.1 error codes omitted in SUS:

[ENOSYS] The setpgid() function is not supported by this implementation.

3.66 setsidQ

3.66.1 Header

#include <sys/types.h> made optional.
#include <unistd.h> added.

26

3.66.2 Description

No change.

3.66.3 Errors

No change.

3.67 setuid()

3.67.1 Header

#include <sys/types.h> made optional.
#include <unistd.h> added.

3.67.2 Description

No change.

3.67.3 Errors

No change.

3.68 sigaction()

3.68.1 Header

No change.

3.68.2 Description
SUS member function added to the minimum set contained in structure sigaction: void(*) (int, siginfo_t *, void *)
sa_sigaction (Signal-catching function)

Additional SUS sa_flags:

SA_ONSTACK

If set and an alternate signal stack has been declared with sigaltstack() or sigstack(), the signal will be delivered to
the calling process on that stack. Otherwise, the signal will be delivered on the current stack.

SA_RESETHAND

If set, the disposition of the signal will be reset to SIG_DFL and the SA_SIGINFO flag will be cleared on entry
to the signal handler (Note: SIGILL and SIGTRAP cannot be automatically reset when delivered; the system
silently enforces this restriction). Otherwise, the disposition of the signal will not be modified on entry to the
signal handler.

In addition, if this flag is set, sigaction() behaves as if the SA_NODEFER flag were also set.

SA_RESTART

This flag affects the behavior of interruptible functions; that is, those specified to fail with errno set to [EINTR].
If set, and a function specified as interruptible is interrupted by this signal, the function will restart and will not
fail with [EINTR] unless otherwise specified. If the flag is not set, interruptible functions interrupted by this
signal will fail with errno set to [EINTR].

SA_SIGINFO
If cleared and the signal is caught, the signal-catching function will be entered as:

27

void func(int signo); where signo is the only argument to the signal catching function. In this case the sajiandler
member must be used to describe the signal catching function and the application must not modify the
sa_sigaction member.

If SA_SIGINFO is set and the signal is caught, the signal-catching function will be entered as:

void func(int signo, siginfo_t *info, void *context); where two additional arguments are passed to the signal
catching function. If the second argument is not a null pointer, it will point to an object of type siginfo_t
explaining the reason why the signal was generated; the third argument can be cast to a pointer to an object of
type ucontext_t to refer to the receiving process' context that was interrupted when the signal was delivered. In
this case the sa_sigaction member must be used to describe the signal catching function and the application must
not modify the sajiandler member.

The si_signo member contains the system-generated signal number.

The si_errno member may contain implementation-dependent additional error information; if non-zero, it contains
an error number identifying the condition that caused the signal to be generated.

The sLcode member contains a code identifying the cause of the signal. If the value of si_code is less than or
equal to 0, then the signal was generated by a process and si_pid and si_uid respectively indicate the process ID
and the real user ID of the sender. The values of si_pid and si_uid are otherwise meaningless.

SA_NOCLDWATT

If set, and sig equals SIGCHLD, child processes of the calling processes will not be transformed into zombie
processes when they terminate. If the calling process subsequently waits for its children, and the process has no
unwaited for children that were transformed into zombie processes, it will block until all of its children terminate,
and wait(), wait3(), waitid() and waitpid() will fail and set errno to [ECHILD]. Otherwise, terminating child
processes will be transformed into zombie processes, unless SIGCHLD is set to SIG_IGN.

SA_NODEFER

If set and sig is caught, sig will not be added to the process' signal mask on entry to the signal handler unless it
is included in sa_mask. Otherwise, sig will always be added to the process' signal mask on entry to the signal
handler.

SUS text added:

When a signal is caught by a signal-catching function installed by sigaction(), a new signal mask is calculated
and installed for the duration of the signal-catching function (or until a call to either sigprocmask() or
sigsuspend() is made). This mask is formed by taking the union of the current signal mask and the value of the
sa_mask for the signal being delivered unless SA_NODEFER or SA_RESETHAND is set, and then
including the signal being delivered. If and when the user's signal handler returns normally, the original signal
mask is restored.

Once an action is installed for a specific signal, it remains installed until another action is explicitly requested (by
another call to sigaction()), until the SA_RESETHAND flag causes resetting of the handler, or
until one of the exec functions is called.

If a process sets the action for the SIGCHLD signal to SIG_IGN, the behavior is unspecified, except as
specified below.

If the action for the SIGCHLD signal is set to SIGJGN, child processes of the calling processes will not be
transformed into zombie processes when they terminate. If the calling process subsequently waits for its
children, and the process has no unwaited for children that were transformed into zombie processes, it will block
until all of its children terminate, and wait(), wait3(), waitid() and waitpid() will fail and set errno to [ECHILD].

If SA_SIGINFO is cleared, the signal-catching function will be entered as:

28

void func(int signo); where func is the specified signal-catching function and signo is the signal number of the
signal being delivered.

If SA_SIGINFO is set, the signal-catching function will be entered as:

void func(int signo, siginfo_t *siginfo, void *ucontextptr); where func is the specified signal-catching function,
signo is the signal number of the signal being delivered, siginfo points to an object of type siginfo_t associated
with the signal being delivered, and ucontextptr points to a ucontext_t.

The behavior of a process is undefined after it returns normally from a signal-catching function for a SIGBUS,
SIGFPE, SIGILL or SIGSEGV signal that was not generated by kill() or raise().

Usually, the signal is executed on the stack that was in effect before the signal was delivered. An alternate stack
may be specified to receive a subset of the signals being caught.

When the signal handler returns, the receiving process will resume execution at the point it was interrupted
unless the signal handler makes other arrangements. If longjmpO or _longjmp() is used to leave the signal
handler, then the signal mask must be explicitly restored by the process.

POSIX.4-1993 defines the third argument of a signal handling function when SA_SIGINFO is set as a void *
instead of a ucontext_t *, but without requiring type checking. New applications should explicitly cast the third
argument of the signal handling function to uncontext_t *.

The BSD optional four argument signal handling function is not supported by this specification. The BSD
declaration would be void handler(int sig, int code, struct sigcontext *scp, char *addr); where sig is the signal
number, code is additional information on certain signals, scp is a pointer to the sigcontext structure, and addr is
additional address information. Much the same information is available in the objects pointed to by the second
argument of the signal handler specified when SA_SIGINFO is set.

3.68.3 Errors

No change.

3.69 sleepQ

3.69.1 Header

#include <unistd.h> added.

3.69.2 Description

SUS text added:

Interactions between sleep() and any of setitimer(), ualarm() or usleep() are unspecified.

3.69.3 Errors

No change.

3.70 stat()

3.70.1 Header

#include <sys/types.h> made optional.

3.70.2 Description

No change.

29

3.70.3 Errors

Additional error codes to function failure:

[EIO] An error occurred while reading from the file system.

[ELOOP] Too many symbolic links were encountered in resolving path.

Additional error codes to possible function failure:

[ENAMETOOLONG] Pathname resolution of a symbolic link produced an intermediate result whose length
exceeds {PATHJvIAX}.

[EOVERFLOW] A value to be stored would overflow one of the members of the stat structure.

3.71 sysconf()

3.71.1 Header

IEEE 1003.1 and SUS function prototype differences:

(IEEE 1003.1) long sysconf(int name);

(SUS) long int sysconf(int name);

3.71.2 Description

SUS adds the following system variables to the minimal set provided in IEEE 1003.1:

_POSIX2_C_BIND _XOPEN_CRYPT BC_SCALE_MAX
_POSIX2_C_DEV _XOPEN_ENH_I18N BC_STRING_MAX
_POSIX2_C_VERSION _XOPEN_SHM COLL_WEIGHTS_MAX
_POSIX2_CHAR_TERM _XOPENUNTX EXPR_NEST_MAX
_POSIX2_FORT_DEV _XOPEN_VERSION IOV_MAX
_POSIX2_FORT_RUN _XOPEN_XCU_VERSION LINE_MAX
_POSIX2_LOCALEDEF ATEXITJvIAX PAGESIZE
_POSIX2_SW_DEV BC_BASE_MAX POSIX2_UPE
_POSIX2_VERSION BC_DIM_MAX RE_DUP_MAX

SUS text added:

If the value of:

sysconf(_SC_2_VERSION) is not equal to the value of the {_POSIX2_VERSION} symbolic constant, the
utilities available via system() or popen() might not behave as described in the XCU specification. This
would mean that the application is not running in an environment that conforms to the XCU specification.
Some applications might be able to deal with this, others might not. However, the interfaces defined in this
document will continue to operate as specified, even if:

sysconf(_SC_2_VERSION) reports that the utilities no longer perform as specified.

IEEE 1003.1 and SUS differences:

(IEEE 1003.1) The value returned shall not be more restrictive than the corresponding value described to the
application when it was compiled with the implementation's <limits.h> or unistd.h>.

(SUS) The value returned shall not be more restrictive than the corresponding value described to the application
when it was compiled with the implementation's <limits.h>, unistd.h>, or <time.h>.

30

3.71.3 Errors

No change.

3.72 tcdrainO

3.72.1 Header

No change.

3.72.2 Description

No change.

3.72.3 Errors

Additional error codes to possible function failure:

[EIO] The process group of the writing process is orphaned, and the writing process is not ignoring or blocking
SIGTTOU.

3.73 tcflow()

3.73.1 Header

No change.

3.73.2 Description

SUS text added:

Attempts to use tcflow() from a process which is a member of a background process group on a fildes associated
with its controlling terminal, will cause the process group to be sent a SIGTTOU signal. If the calling process
is blocking or ignoring SIGTTOU signals, the process is allowed to perform the operation, and no signal is sent.

3.73.3 Errors

Additional error codes to possible function failure:

[EIO] The process group of the writing process is orphaned, and the writing process is not ignoring or blocking
SIGTTOU.

3.74 tcflushO

3.74.1 Header

No change.

3.74.2 Description

SUS text added:

Attempts to use tcflush() from a process which is a member of a background process group on a fildes associated
with its controlling terminal, will cause the process group to be sent a SIGTTOU signal. If the calling process
is blocking or ignoring SIGTTOU signals, the process is allowed to perform the operation, and no signal is sent.

3.74.3 Errors

Additional error codes to possible function failure:

[EIO] The process group of the writing process is orphaned, and the writing process is not ignoring or blocking
SIGTTOU.

31

3.75 tcgetattrO

3.75.1 Header

No change.

3.75.2 Description

IEEE 1003.1 and SUS differences:

(IEEE 1003.1) The rate returned as the input baud rate [if differing baud rates are not supported] shall be either
the number zero or the output rate.

(SUS) If the terminal device does not support split baud rates, the input baud rate stored in the termios structure
will be 0.

3.75.3 Errors

Additional error codes to possible function failure:

[EIO] The process group of the writing process is orphaned, and the writing process is not ignoring or blocking
SIGTTOU.

3.76 tcgetpgrpO

3.76.1 Header

#include <sys/types.h> made optional.
#include <unistd.h> added.

3.76.2 Description

No change.

3.76.3 Errors

IEEE 1003.1 error codes omitted in SUS:

[ENOSYS] The tcgetpgrpO function is not supported in this implementation.

3.77 tcsendbreakO

3.77.1 Header

No change.

3.77.2 escription

SUS text added:

Attempts to use tcsendbreak() from a process which is a member of a background process group on a fildes
associated with its controlling terminal, will cause the process group to be sent a SIGTTOU signal. If the
calling process is blocking or ignoring SIGTTOU signals, the process is allowed to perform the operation, and
no signal is sent.

3.77.3 Errors

Additional error codes to possible function failure:

[EIO] The process group of the writing process is orphaned, and the writing process is not ignoring or blocking
SIGTTOU.

32

3.78 tcsetattrO

3.78.1 Header

No change.

3.78.2 Description

SUS text added:

Attempts to use tcsetattr() from a process which is a member of a background process group on afildes associated
with its controlling terminal, will cause the process group to be sent a SIGTTOU signal. If the calling process
is blocking or ignoring SIGTTOU signals, the process is allowed to perform the operation, and no signal is sent.

3.78.3 Errors

Additional error codes to possible function failure:

[EIO] The process group of the writing process is orphaned, and the writing process is not ignoring or blocking
SIGTTOU.

3.79 tcsetpgrpO

3.79.1 Header

#include <sys/types.h> made optional.
#include <unistd.h> added.

3.79.2 Description

No change.

3.79.3 Errors

IEEE 1003.1 error codes omitted in SUS:

[ENOSYS] The tcsetpgrpO function is not supported in this implementation.

3.80 tmpfileO

Comparison is not possible because IEEE 1003.1 references this function to fopen(), whereas SUS details this
function in its own section. However, SUS makes the following updates:

3.80.1 Errors

Additional error codes to possible function failure:

[EMFILE] {FOPENJvlAX} streams are currently open in the calling process.

3.81 ttynameO

3.81.1 Header

#include <sys/types.h> made optional.

3.81.2 Description

IEEE 1003.1 and SUS differences:

(IEEE 1003.1) The ttyname() function returns a NULL pointer if fildes is not a valid file descriptor associated
with a terminal or if the pathname cannot be determined.

33

(SUS) Upon successful completion, ttyname() returns a pointer to a string. Otherwise, a null pointer is
returned and errno is set to indicate the error.

3.81.3 Errors

Additional error codes to possible function failure:

[EBADF] The fildes argument is not a valid open file descriptor.

[ENOTTY] The fildes argument is not associated with a terminal.

3.82 tzset()

3.82.1 Header

No change.

3.82.2 Description

SUS text added:

The tzset() function also sets the external variable daylight to 0 if Daylight Savings Time conversions should
never be applied for the time zone in use; otherwise non-zero. The external variable timezone is set to the
difference, in seconds, between Coordinated Universal Time (UTC) and local standard time, for example:

TZ timezone
EST 5*60*60
GMT 0*60*60
JST -9*60*60
MET -1*60*60
MST 7*60*60
PST 8*60*60

3.82.3 Errors

No change.

3.83 umaskQ

3.83.1 Header

#include <sys/types.h> made optional.

3.83.2 Description

No change.

3.83.3 Errors

No change.

3.84 unlinkO

3.84.1 Header

#include <unistd.h> added.

3.84.2 Description

SUS text added:

34

If path names a symbolic link, unlink() removes the symbolic link named by path and does not affect any file or
directory named by the contents of the symbolic link

3.84.3 Errors

Additional error codes to function failure:

[EBUSY] The file named by the path argument cannot be unlinked because it is being used by the system or
another process and the implementation considers this an error, or the file named by path is a named
STREAM.

[ELOOP] Too many symbolic links were encountered in resolving path.

[EPERM] or [EACCES] The SJSVTX flag is set on the directory containing the file referred to by the path
argument and the caller is not the file owner, nor is the caller the directory owner, nor does the caller have
appropriate privileges.

Additional error codes to possible function failure:

[ENAMETOOLONG] Pathname resolution of a symbolic link produced an intermediate result whose length
exceeds {PATHJVIAX}.

[ETXTBSY] The entry to be unlinked is the last directory entry to a pure procedure (shared text) file that is
being executed.

3.85 utime()

3.85.1 Header

#include <sys/types.h> made optional.
#include <unistd.h> added.

3.85.2 Description

IEEE 1003.1 text omitted:

Implementations may add extensions as permitted (in Subclause 1.3.1.1, point (2)). Adding extensions to this
structure, which might change the behavior of the application with respect to this standard when those fields in
the structure are uninitialized, also requires that the extensions be enabled as required by the same subclause
above.

3.85.3 Errors

Additional error codes to function failure:

[ELOOP] Too many symbolic links were encountered in resolving path.

Additional error codes to possible function failure:

[ENAMETOOLONG] Pathname resolution of a symbolic link produced an intermediate result whose length
exceeds {PATHMAX}.

3.86 wait(), waitpid()

3.86.1 Header

#include <sys/types.h> made optional.

3.86.2 Description

SUS text added:

35

WCONTINUED The waitpid() function will report the status of any continued child process specified by
pid whose status has not been reported since it continued from a job control stop.

WIFCONTTNUED(stat_val) Evaluates to a non-zero value if status was returned for a child process that has
continued from a job control stop.

If the calling process has SA_NOCLDWAIT set or has SIGCHLD set to SIGJGN, and the process has no
unwaited for children that were transformed into zombie processes, it will block until all of its children terminate,
and wait() and waitpid() will fail and set errno to [ECHILD].

If the information pointed to by statjoc was stored by a call to waitpid() that specified the WUNTRACED flag
and did not specify the WCONTINUED flag, exactly one of the macros WIFEXITED(*statJoc),
WIFSIGNALED(*stat_loc), and WIFSTOPPED(*stat_loc), will evaluate to a non-zero value.

If the information pointed to by statjoc was stored by a call to waitpid() that specified the WUNTRACED and
WCONTINUED flags, exactly one of the macros WIFEXITED(*statJoc), WIFSIGNALED(*statJoc),
WIFSTOPPED(*stat_loc), and WIFCONTINUED(*statJoc), will evaluate to a non-zero value.

If the information pointed to by statjoc was stored by a call to waitpid() that did not specify the WUNTRACED
or WCONTINUED flags, or by a call to the wait() function, exactly one of the macros
WIFEXITED(*statJoc) and WIFSIGNALED(*stat Joe) will evaluate to a non-zero value.

If the information pointed to by statjoc was stored by a call to waitpid() that did not specify the WUNTRACED
flag and specified the WCONTINUED flag, or by a call to the wait() function, exactly one of the macros
WIFEXITED(*statJoc), WIFSIGNALED(*statJoc), and WIFCONTINUED(*statJoc), will evaluate to a
non-zero value.

3.86.3 Errors

No change.

3.87 write()

3.87.1 Header

#include <unistd.h> added.
SUS function and header added as follows:

#include <sys/uio.h>

ssize_t writev(int fildes, const struct iovec *iov, int iovent);

3.87.2 Description

IEEE 1003.1 and SUS differences:

(IEEE 1003.1) If writeO is interrupted by a signal after it successfully writes some data, either it shall return-1
with errno set to [EINTR], or it shall return the number of bytes written. A write() to a pipe or FIFO shall never
return with errno set to [EINTR] if it has transferred any data and nbyte is less than or equal to {PIPEJ3UF}.

(SUS) If writeO is interrupted by a signal after it successfully writes some data, it will return the number
of bytes written.

SUS text added:

If the OJ3YNC flag of the file status flags is set and fildes refers to a regular file, a successful write() does not
return until the data is delivered to the underlying hardware.

If a write() requests that more bytes be written than there is room for (for example, the ulimit or the physical
end of a medium), only as many bytes as there is room for will be written. For example, suppose there is space
for 20 bytes more in a file before reaching a limit. A write of 512 bytes will return 20. The next write of a non-

36

zero number of bytes will give a failure return (except as noted below) and the implementation will
generate a SIGXFSZ signal for the process.

Iffildes refers to a STREAM, the operation of write() is determined by the values of the minimum and maximum
nbyte range ("packet size") accepted by the STREAM. These values are determined by the topmost STREAM
module. If nbyte falls within the packet size range, nbyte bytes will be written. If nbyte does not fall within the
range and the minimum packet size value is 0, write() will break the buffer into maximum packet size segments
prior to sending the data downstream (the last segment may contain less than the maximum packet size). If
nbyte does not fall within the range and the minimum value is non-zero, write() will fail with errno set to
[ERANGE]. Writing a zero-length buffer (nbyte is 0) to a STREAMS device sends 0 bytes with 0 returned.
However, writing a zero-length buffer to a STREAMS-based pipe or FIFO sends no message and 0 is returned.
The process may issue I_SWROPT ioctl() to enable zero-length messages to be sent across the pipe or FIFO.

When writing to a STREAM, data messages are created with a priority band of 0. When writing to a STREAM
that is not a pipe or FIFO:

If 0_NONBLOCK is clear, and the STREAM cannot accept data (the STREAM write queue is full due to
internal flow control conditions), write() will block until data can be accepted.

If 0_NONBLOCK is set and the STREAM cannot accept data, write() will return -1 and set errno to [EAGAIN].

If 0_NONBLOCK is set and part of the buffer has been written while a condition in which the STREAM cannot
accept additional data occurs, write() will terminate and return the number of bytes written.

In addition, write() and writev() will fail if the STREAM head had processed an asynchronous error before the
call. In this case, the value of errno does not reflect the result of write() or writev() but reflects the prior error.

The writev() function is equivalent to write(), but gathers the output data from the iovcnt buffers specified by the
members of the iov array: iov[0], iov[l],..., iov[iovcnt-l]. iovcnt is valid if greater than 0 and less than or equal
to {IOV.MAX}, defined in <limits.h>.

Each iovec entry specifies the base address and length of an area in memory from which data should be written.
The writevO function will always write a complete area before proceeding to the next.

Iffildes refers to a regular file and all of the iov_len members in the array pointed to by iov are 0, writev() will
return 0 and have no other effect. For other file types, the behavior is unspecified.

If the sum of the iov_len values is greater than SSIZEJMAX, the operation fails and no data is transferred.

Upon successful completion, writev() returns the number of bytes actually written. Otherwise, it returns a value
of -1, the file-pointer remains unchanged, and errno is set to indicate an error.

A write to a STREAMS file may fail if an error message has been received at the STREAM head. In this case,
errno is set to the value included in the error message.

3.87.3 Errors

IEEE 1003.1 existing error codes for write() also applies to function writev().

Error codes to both functions' failure:

[EFBIG] An attempt was made to write a file that exceeds the implementation-dependent maximum file size or
the process' file size limit.

[EIO] A physical I/O error has occurred.

[EPIPE] An attempt is made to write to a pipe or FIFO that is not open for reading by any process, or that
only has one end open. A SIGPIPE signal will also be sent to the process.

[ERANGE] The transfer request size was outside the range supported by the STREAMS file associated with
fildes.

37

Error codes to writevQ's failure:

[EINVAL] The sum of the iovjen values in the iov array would overflow an ssize_t.

Error codes to both functions' possible failure:

[EINVAL] The STREAM or multiplexer referenced by fildes is linked (directly or indirectly) downstream from
a multiplexer.

[ENXIO] A request was made of a non-existent device, or the request was outside the capabilities of the device.

[ENXIO] A hangup occurred on the STREAM being written to.

Error codes to writev()'s possible failure:

[EINVAL] The iovcnt argument was less than or equal to 0, or greater than {IOV_MAX}.

38

1

4. CROSS REFERENCE TABLE

The following table summarizes all the functions' examinations in a table for cross-referencing purposes.

Table 4-1 Functionality change details

NUM FUNCTIONS NO

CHANGE

SECTIONS CHANGED COMMENTS REF

PAGE HEADER DESC ERROR

1 _exit() X X 7

2 abort() X 2

3 access() X 3

4 alarm() X X 3

5 cfgetispeed() X 2

6 cfgetospeed() X 2

7 cfsetispeed() X 3

8 cfsetospeed() X 3

9 chdir() X X 4

10 chmod() X X X 4

11 chown() X X X 5

12 close() X X X 5

13 closedir() X X 6

14 creat() X 6

15 ctermid() X 2

16 dup() X 2

17 dup2() X 2

18 execl() X X X 6

19 execle() X X X 6

20 execlp() X X X 6

21 execv() X X X 6

22 execve() X X X 6

23 execvp() X X X 6

24 exit() X X 7

25 fclose() X Comparison N/A 9

26 fcntl() X 9

27 fdopen() X X 9

28 fflush() X 10

29 fgetc() X 10

30 fgets() X 10

31 fileno() X 10

32 fopen() X Comparison N/A 11

39

Table 4-1 Functionality change details (cont'd)

33 |fork() 1 X
11

<

34 fpathconf() X 2
35 |fprintf() Comparison N/A 11
36 fputc() X Comparison N/A 11
37 fputs() Comparison N/A 12
38 J freäd() Comparison N/A 12
39 freopen() X Comparison N/A 12
40 fscanf() X X Comparison N/A .2
41 fseek() X X Comparison N/A

13

42 fstat() X X 13
43 ftell() X 2
44 fwnte() X 2
45 getc() Comparison N/A 14
46 getchar() Comparison N/A 14
47 getcwd() X X 14
48 getegid() X 14
49 getenv() X 14
50 geteuid() X 15
51 getgid() X 15
52 getgrgid() X X X 15
53 getgrnam() r X X X 15
54 getgroups()

* X f 16
55 j getlogin()

*
X X 16

56 getpgrp() X 16
57 getpid() X 16
58 getppid() X 16
59 getpwnam() X X X 17

60 I getpwuid() X X X 17
61 J gets() X 2

62 [getquid() X 17
63 1 isatty() X X X 17
64 j killC) X X 18
65 j ink() X X 18

66 f seek() X 18
67 ji Tikdir() X X X 18

68 ji nkfifo() X X X 19
69 }()pen() X X X 19
70 }(3pendir() X X 20 71 I1 ?athconf() X 21
72 Ji)ause() X 2?

40

Table 4-1 Functionality change details (cont'd)

73 perror() 1 X 2

74 pipe() X 21

75 printf() Comparison N/A 22

76 putc() Comparison N/A 22

77 putchar() Comparison N/A 22

78 puts() Comparison N/A 22

79 read() X X X 22

80 readdir() X X X 24

81 remove() X 2

82 rename() j X X 24

83 rewind() Comparison N/A 25

84 rewinddir() X X 25

85 rmdir() X X X 25

86 scanf() Comparison N/A 26

87 setgid() X 26

88 setlocale() Comparison N/A 26

89 setpgid() X X 26

90 setsid() X 26

91 setuid() X 27

92 sigaction() X 27

93 sigaddset() X 2

94 sigdelset() X 2

95 sigemptyset() X 2

96 sigfillset() X 2

97 sigismember() X 2

98 siglongjmp() X 2

99 sigpending() X 2

100 sigprocmask() X 2

101 sigsetjmp() X 2

102 ; sigsuspend() X 2

103 sleep() X 1 X 29

104 1 stat() X X 29

105 sysconf() X J X 30

106 1 tcdrain() X 31

107 tcflow() X X 31

108 tcflush() X X 31

109 1 tcgetattr() X X 32

110 tcgetpgrp() X X 32

111 tcsendbreak() X X 32

112 tcsetattr() X X 33

41

Table 4-1 Functionality change details (cont'd)

113 tcsetpgrp() X X I 33
114 |time() X 2
115 times() X 2
116 ItmpfileO X Comparison N/A 33
117 ttyname() X X X 33
118 tzset() X 34
119 umask() X 34
120 uname() X 2
121 unlink() X X X 34
122 utime() X X X 35
123 wait() X X 35
124 waitpid() X X 35
125 write() X X 36 1

42

5. REFERENCES

{1} IEEE 1003.1 Portable Operating System Interface - Part I: System Application Program Interface [C
Language]
{2} SUS Single UNIX Specification (on CD-ROM)
{3} Federal Information Processing Standards Publication 151-2

6. BIBLIOGRAPHY
{1} Go Solo-How to Implement & Go Solo with the Single UNLX Specification, by
Stephen R. Walli

43

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

July 1995

3. REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

COMPARISON OF IEEE PORTABLE OPERATING SYSTEM INTERFACE (POSIX) -
PART I and X/OPEN SINGLE UNIX SPECIFICATIONS (SUS)

5. FUNDING NUMBERS

PE: 0604574N
AN: DN302171

6. AUTHOR(S)

D. K. Fisher, K. M. Tran

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Command, Control and Ocean Surveillance Center (NCCOSC)
RDT&E Division
San Diego, CA 92152-5001

8. PERFORMING ORGANIZATION
REPORT NUMBER

TD 2828

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Information Systems Agency (DISA) Center for Standards
Parkridge Boulevard
Reston, VA 22091-4398

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This document is a textual comparison study of the IEEE 1003.1 Portable Operating System Interface (POSIX) - Part 1: System
Application Program Interface [C Language] (IEEE 1003.1: 1990) and X/OPEN Single UNIX Specification (SUS). The purpose of this
document is to aid in determining the criteria needed for the successor to FIPS PUB 151-2. It can also be used as a tool to ascertain the
differences between the two specifications. However, note that this document does not attempt to address application portability concerns
between the two specifications. To determine the application portability of some commands between an XPG4 UNIX-Branded imple-
mentation and a FIPS 151-2 certified implementation, further study is required.

14. SUBJECT TERMS

Portable Operating System Interface (POSIX) - Part I
X/OPEN Single UNIX Specification (SUS)
FIPS 151 2 Specification

15. NUMBER OF PAGES

52

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OFABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

SAME AS REPORT

NSN 7540-01-280-5500 Standard form 298 (FRONT)

UNCLASSIFIED

21a. NAME OF RESPONSIBLE INDIVIDUAL

D. K. Fisher
21b. TELEPHONE (include Area Code)

(619)553-4095
21c. OFFICE SYMBOL

Code 411

NSN 7540-01-280-5500
Standard form 298 (BACK)

UNCLASSIFIED

INITIAL DISTRIBUTION

Code 0012 Patent Counsel (1)
Code 0271 Archive/Stock (6)
Code 0274 Library (2)
Code 4102 M. Crowley
Code 4102 H. Gold
Cpde 4102 D. Whitaker
Code 411 M. Vineberg
Code 411 R. Younger
Code 411 L. Anderson
Code 411 D. K. Fisher (5)
Code 4121 R. Laverty
Code 4121 M. Morgan
Code 4122 G. Myers
Code 4122 D. Wilcox
Code 4122 L. Sutton
Code 4122 K. Tran (5)
Code 4123 K. Prenger
Code 4123 R. Johnston
Code 4123 J. Drummond
Code 4123 M. Shapiro
Code 822 E. Howard
Code 822 J. Oleksa

Defense Technical Information Center
Alexandria, VA 22304-6145 (4)

NCCOSC Washington Liaison Office
Washington, DC 20363-5100

Center for Naval Analyses
Alexandria, VA 22302-0268

Navy Acquisition, Research and Develop-
ment

Information Center (NARDIC)
Arlington, VA 22244-5114

GIDEP Operations Center
Corona, CA 91718-8000

Naval Air Systems Command
Arlington, VA 22243-5460

Naval Air Warfare Center Aircraft Division
Patuxent River, MD 20670

Naval Air Warfare Center Aircraft Division
Warminster, PA 18974-5000

Space & Naval Warfare Systems Command
Arlington, VA 22245-5200 (2)

Naval Surface Warfare Center, Dahlgren
Division
Dahlgren, VA 22448-5100 (2)

Naval Undersea Warfare Center, Newport
Division
Newport, RI 02841-5047 (2)

National Institute for Standards & Technol-
ogy
Gaithersburg, MD 20899

DISA—Center for Standards
Reston, VA 22091-4398

Institute for Defense Analyses
Brentwood, TN 37027

Carnegie Mellon University
Pittsburgh, PA 15123

CTA, Inc.
Ridgecrest, CA 93555

UNISYS
St. Paul, MN 55164-0525

(4)

(85)

